Автор: Админка

Переправить козу волка и капусту


Волк, коза и капуста. Загадка на логику.

Эта известная головоломка есть в народном творчестве таких стран, как Италия, Румыния, Эфиопия и Зимбабве. Существует не одна ее вариация: с лисой, курицей и хлебом или с пантерой, свиньей и кашей! А Ты знаешь, как решать задачу о переправе?

14 92 т.

Итак, представь, что Ты — фермер, у которого есть маленькая лодка. С одного берега реки на другой Тебе необходимо перевезти волка, козу и капусту. Всех вместе взять нельзя — нужно переправлять каждого «пассажира» по отдельности. Но имей в виду, что когда Ты повезешь на другой берег капусту, в это время волк съест козу. А если решишь везти волка — коза скушает капусту.

Что же делать? Хорошенько поразмысли. Рейсов можно делать сколько угодно — главное, чтобы все оставалось целым и невредимым.

Ну как, удалось решить эту нелегкую задачку? Все еще нет? Ну ладно, дам одну подсказку: переправлять «пассажира» можно не только туда, но и назад!

Что же — думаю, теперь Тебе удалось перевезти всех целыми и невредимыми! Посмотри на решение задачи и проверь, все ли сходится.

  1. Сначала нужно перевезти козу, оставив волка с капустой.
  2. Теперь возвращаемся и забираем волка. Но оставлять волка с козой на новом берегу нельзя.
  3. Поэтому берем козу с собой в лодку, а волк сидит на берегу одинокий и голодный.
  4. Козу оставляем на берегу, а капусту переправляем к волку.
  5. Возвращаемся назад и забираем козу.

Кстати, это не единственный вариант решения задачи. Вот еще один:

  1. Везем козу туда.
  2. Возвращаемся обратно.
  3. Везем капусту туда.
  4. Забираем козу назад.
  5. Везем волка туда.
  6. Возвращаемся за козой.
  7. Перевозим козу туда.

Готово!

А теперь признавайся, удалось ли Тебе самостоятельно дойти до правильного решения, и если да — то каким способом? ;)

Еще больше отборных загадок найдешь тут:

Заметили орфографическую ошибку? Выделите её мышкой и нажмите Ctrl+Enter

Ответ на задачу про волка, козу и капусту.

Задача про волка, козу и капусту – одна из самых известных и популярных задач о переправе. В данной статье мы разберём решение данной задачи.

Формулировка.

Однажды крестьянину понадобилось перевезти через реку волка, козу и капусту. У крестьянина есть лодка, в которой может поместиться, кроме самого крестьянина, только одно существо или предмет — или волк, или коза, или капуста. Если крестьянин оставит без присмотра волка с козой, то волк съест козу; если крестьянин оставит без присмотра козу с капустой, коза съест капусту. Как крестьянину перевезти на другой берег всё своё имущество в целости и сохранности?

Решение.

Стоит сразу заметить, что коза взаимодействует сразу с двумя объектами: и волком, и капустой. Поэтому первой с собой стоит взять именно её.

  • Берём козу и перевозим её на другой берег, высаживаем.
  • Возвращаемся обратно, берём волка и перевозим его на другой берег.
  • Высаживаем волка, забираем козу и везём её обратно.
  • Высаживаем козу, забираем капусту и везём её на другой берег.
  • Высаживаем капусту и возвращаемся обратно, берём козу и везём её на другой берег
  • Высаживаем козу – все в сборе.

У этой задачи есть и другой не очень принципиально отличающееся решение: капусту и волка можно поменять местами. Основная идея – не оставлять козу с волком или капустой.

Похожие статьи

Перевозим волка, козу и капусту через реку с эффектами на Haskell / Хабр

Однажды крестьянину понадобилось перевезти через реку волка, козу и капусту. У крестьянина есть лодка, в которой может поместиться, кроме самого крестьянина, только один объект — или волк, или коза, или капуста. Если крестьянин оставит без присмотра волка с козой, то волк съест козу; если крестьянин оставит без присмотра козу с капустой, коза съест капусту.

В этой статье мы попытаемся найти обобщенное решение для такого типа головоломок и для этого будем использовать алгебраические эффекты.

Начнем с самого простого — маршрута перемещений. Так как мы не знаем заранее, через какое гарантированное количество шагов мы получим решение, можно построить бесконечный маршрут, все равно мы будем вычислять его лениво:

data Direction = Back | Forward route :: [Direction] route = iterate alter Forward alter :: Direction -> Direction alter Back = Forward alter Forward = Back 

Так как мы собираемся построить обобщенное решение, то и абстрагируемся от персонажей тоже. Мы построим нетранзитивное симметричное отношение порядка между элементами множества персонажей (поделитесь в комментариях, если для этого есть свое устоявшееся название):
data Character = Wolf | Goat | Cabbage deriving Eq class Survivable a where survive :: a -> a -> Ordering instance Survivable Character where survive Wolf Goat = GT survive Goat Wolf = LT survive Goat Cabbage = GT survive Cabbage Goat = LT survive _ _ = EQ 

Зачем вообще использовать эффекты? Эффекты помогают бороться со сложностью, которая присуща любой предметной области. Значит, для того, чтобы определить какие эффекты использовать для решения головоломки, стоит подумать над тем, с какими сложностями мы можем столкнуться, когда попробуем описать решение задачи с помощью кода:
  • Чтобы найти решение, при котором все персонажи будут перевезены на противоположный берег, надо перебрать много вариантов перестановок. Для этого мы будем использовать эффект множественности, которого можно добиться с помощью обычного списка.
  • Еще нам нужно запоминать местоположение персонажа, чтобы проверять условия совместимости с другими персонажами (волк ест козу, коза ест капусту) и кого можно посадить на лодку. Мы можем хранить состав двух берегов type River a = ([a],[a]) c помощью эффекта состояния State (River a).
  • Лодка может взять кого-нибудь на борт, а может и не брать — тут нам пригодится эффект частичности с Maybe.

В коде я буду использовать свою экспериментальную библиотеку joint (на Хабре есть две статьи, объясняющие ее суть — первая и вторая), но при желании решение можно перенести на transformers или mtl.

Итак, у нас есть три разрозненных эффекта: состояние, множественность, частичность. Теперь надо решить, как мы собираемся их скомпоновать между собой:

  • В аппликативной/монадной цепочке вычислений для Maybe, если мы где-то получили Nothing, то и результат всего вычислений будет Nothing. Мы оставим его отдельно, так как не хотим, чтобы при отправлении пустой лодки (без персонажа, крестьянина мы не учитываем) мы потеряли весь прогресс в нахождении решения.
  • Каждый последующий выбор хода (эффект множественности) должен опираться на состав текущего берега (эффект состояния), так как мы не можем взять персонажа в лодку, если она находится на другом берегу. Следовательно, нам нужно эти эффекты сцепить в трансформер: State (River a) :> [].

Один ход в головоломке можно описать как последовательность действий:
  1. Получить состав персонажей на текущем берегу
  2. Выбрать следующего персонажа для транспортировки
  3. Переместить персонажа на противоположный берег
step direction = bank >>= next >>= transport

Давайте пройдемся по каждому шагу подробнее.

В зависимости от направления перемещения лодки, применяем линзу для источника отправления к состоянию всей реки и получаем состав текущего берега:

bank :: (Functor t, Stateful (River a) t) => t [a] bank = view (source direction) <$> current 

Выбор следующего персонажа происходит так: получая набор персонажей с берега (предыдущее выражение bank), мы формируем пространство выбора, добавляя к этому самому пространству пустую лодку:

\xs -> Nothing : (Just <$> xs) 

Для каждого кандидата (пустая лодка (Nothing) — тоже кандидат) проверяем чтобы на оставшемся берегу не оставалось персонажей, которые были бы не прочь полакомиться друг другом:

valid :: Maybe a -> Bool valid Nothing = and $ coexist <$> xs <*> xs valid (Just x) = and $ coexist <$> delete x xs <*> delete x xs coexist :: Survivable a => a -> a -> Bool coexist x y = survive x y == EQ 

И когда мы отфильтровали пространство выбора персонажей, поднимаем эффект множественности и возвращаем каждый элемент из этого пространства выбора:

next :: (Survivable a, Iterable t) => [a] -> t (Maybe a) next xs = lift . filter valid $ Nothing : (Just <$> xs) 

Остался последний шаг — фактическая транспортировка c помощью линз: удаляем персонажа с берега отправки и добавляем к берегу назначения:

leave, land :: River a -> River a leave = source direction %~ delete x land = target direction %~ (x :) 

Если в лодке был персонаж — изменяем состояние реки, иначе ход был холостым:

transport :: (Eq a, Applicative t, Stateful (River a) t) => Maybe a -> t (Maybe a) transport (Just x) = modify @(River a) (leave . land) $> Just x where transport Nothing = pure Nothing 

Было бы неплохо посмотреть на работу программы в действии. Для нахождения решения нам нужно как минимум совершить семь шагов по маршруту:

start :: River Character start = ([Goat, Wolf, Cabbage], []) solutions = run (traverse step $ take 7 route) start 

И у нас есть два решения:

Полные исходники можно посмотреть здесь.

Загадка про волка, козу и капусту

На чтение 1 мин. Просмотров 64

Крестьянину нужно перевезти через реку волка, козу и капусту. Но лодка такова, что в ней может поместиться только крестьянин, а с ним или только волк, или только коза, или только капуста. Но если оставить волка с козой, то волк съест козу, а если оставить козу с капустой, то коза съест капусту. Как перевез свой груз крестьянин?

Ответ

Ясно, что приходится начать с козы. Крестьянин, перевезя козу, возвращается и берет волка, которого перевозит на другой берег, где его и оставляет, но зато берет и везет обратно на первый берег козу. Здесь он оставляет ее и перевозит к волку капусту. Вслед затем, возвратившись, он перевозит козу, и переправа оканчивается благополучно.

Задача на переправу Волк, коза и капуста

Волк, коза и капуста. На берегу реки стоит крестьянин с лодкой, а рядом с ним находятся волк, коза и капуста.

Крестьянин должен переправиться сам и перевезти волка, козу и капусту на другой берег. Однако в лодку кроме крестьянина помещается либо только волк, либо только коза, либо только капуста.

Оставлять же волка с козой или козу с капустой без присмотра нельзя — волк может съесть козу, а коза — капусту.

Как должен вести себя крестьянин?

Решение задачи Волк, коза и капуста

В данной задаче крестьянин может следовать одному из двух алгоритмов:

Алгоритм 1

1) сначала переправляются крестьянин и коза
2) крестьянин оставляет козу и возвращается обратно
3) крестьянин переправляет волка
4) крестьянин возвращается с козой
5) крестьянин переправляет капусту
6) крестьянин возвращается один
7) крестьянин забирает козу и отправляется на другой берег

Алгоритм 2

1) сначала переправляются крестьянин и коза
2) крестьянин оставляет козу и возвращается обратно
3) крестьянин переправляет капусту
4) крестьянин возвращается с козой
5) крестьянин переправляет волка
6) крестьянин возвращается один
7) крестьянин забирает козу и отправляется на другой берег

Задача «Волк, коза и капуста»

Удивительные находки и неразгаданные загадки

И.Г. СУХИН, Институт теории образования и педагогики РАО

 

Во многих математических монографиях есть страницы, посвященные истории возникновения знаменитых задач, доступных учащимся старших классов (например, Чистяков В.Д. Старинные задачи по элементарной математике — Минск, 1978). Однако практически нет работ, из которых учитель начальной школы мог бы получить исчерпывающую информацию о не менее известных старинных головоломках, представляющих интерес для учеников I–IV классов. Нам хотелось бы поделиться с читателями журнала результатами своих поисков и начать разговор о поразительной судьбе некоторых из таких задач.

В “Книге 1” труда Е.И. Игнатьева “В царстве смекалки, или Арифметика для всех: Опыт математической хрестоматии: Книга для семьи и школы” (СПб.: Тип. А.С. Суворина, 1911. — С. 75–76) приведена одна из самых замечательных логических задач в истории человечества: “Задача 52-я. Волк, коза и капуста”:

“Крестьянину нужно перевезти через реку волка, козу и капусту. Но лодка такова, что в ней может поместиться только крестьянин, а с ним или один волк, или одна коза, или одна капуста. Но если оставить волка с козой, то волк съест козу, а если оставить козу с капустой, то коза съест капусту. Как перевез свой груз крестьянин?”

Даже если приводимая задача вам знакома, не спешите читать решение, попробуйте словно впервые поискать оптимальный маршрут и только затем ознакомьтесь с ходом решения, предлагаемым Е.И. Игнатьевым:

“Решение: Ясно, что приходится начать с козы. Крестьянин, перевезши козу, возвращается и берет волка, которого перевозит на другой берег, где его и оставляет, но зато берет и везет обратно на первый берег козу. Здесь он оставляет ее и перевозит к волку капусту. Вслед затем, возвратившись, он перевозит козу, и переправа оканчивается благополучно”.

Данная задача бессчетное число раз публиковалась в самых различных отечественных газетах, журналах и сборниках. При этом почти во всех работах упоминается только одно решение. А ведь есть и альтернативный путь!

Вначале крестьянин опять-таки перевозит козу. Но вторым он не обязательно должен забирать волка! Можно взять капусту, отвезти ее на другой берег, оставить там и вернуть на первый берег козу. Затем перевезти на другой берег волка, вернуться за козой и снова отвести ее на другой берег. В этом случае количество рейсов (7) точно такое же, как и в опубликованном выше варианте.

Существование двух решений не отмечено ни в многократных переизданиях книги Е.И. Игнатьева, ни в других самых авторитетных источниках. В их числе: Э. Люкас “Математические развлечения: Приложение арифметики, геометрии и алгебры к различного рода запутанным вопросам, забавам и играм” (СПб.: Изд. Павленкова, 1883. — С. 7), Н.Н. Аменицкий, И.П. Сахаров “Забавная арифметика: Хрестоматия для развития сообразительности и самодеятельности детей в семье и в школе” (М.: Изд. товарищества И.Д. Сытина, 1909. — С. 23–24), В. Аренс “Математические игры и развлечения” (СПб.: Физика, 1911. — С. 20), Б.А. Кордемский “Математическая смекалка” (М.: Государственное издательство технико-теоретической литературы, 1955. — С. 14; М.: Наука, 1991. — С. 15) и многочисленные сборники последних лет.

Это тем более удивительно, что наличие двух решений было указано, к примеру, еще в начале 20-х годов ХХ века в книге В. Литцмана “Веселое и занимательное в фигурах и числах: Математические развлечения” (М. — Пт.: Изд. Л.Д. Френкель, 1923. — С. 128–129), причем довольно подробное. Видимо, многие издатели сочли необязательным приводить оба варианта, ведь они схожи и являются по сути “зеркальными”. Но в книге для детей, особенно младшего возраста, это необходимо, иначе существенно снижается педагогическая ценность задачи!

Любопытно, что Б.А. Кордемский в решении отмечает только второй вариант и по какой-то причине не упоминает первый. Загадка? Загадка.

Очень интересен вопрос о времени возникновения данной головоломки и ее первоисточнике. Б.А. Кордемский в книге “Математическая смекалка” говорит вскользь: “Это... старинная задача; встречается в сочинениях VIII века”.

Вначале может показаться, что мы имеем дело с опечаткой, ведь первая или одна из первых отечественных публикаций задачи “Волк, коза и капуста” датирована концом ХVIII века. В фондах Российской Исторической библиотеки сохранилась книга “Гадательная арифметика для забавы и удовольствия” (СПб., 1789). На титульном листе значится: “На ижд. изд. И. Краснопольского”, что означает “на иждивении издателя И. Краснопольского”. В раритете на 62 страницах сорок одна занимательная задача. На с. 42–43 читаем: “Некоторый мужик везши с собою волка, козу и капусту приехал к реке, у берегу коей нашел столь малую лодку, что она кроме его и одного чего-нибудь из везомых им, поднимать не могла. И так спрашивается, каким образом переправить оных через реку так, чтобы волк не съел козы, а коза капусты?” Далее приводится один вариант решения (первый).

Интересно, что в пособии болгарских авторов “Математический фольклор” (М.: Знание, 1987. — С. 180) задача о волке, козе и капусте помещена в раздел “Из математического фольклора других стран” с пометкой в скобках “Россия”.

Вернемся к истории задачи и вопросу: прав ли Б.А. Кордемский, датировав задачу восьмым веком.

По мнению ряда историков, задача имеет западные корни. В. Аренс указывает, что авторство хрестоматийной задачи приписывается Алкуину (Аренс В. Математические игры и развлечения. — СПб.: Физика, 1911. — С. 20).

В. Литцман, предлагая читателям познакомиться с задачей о переправе в книге “Веселое и занимательное о числах и фигурах” (М.: Государственное издательство физико-математической литературы, 1963. — С. 189), вскользь пишет: “У Алкуина мы находим следующий рассказ”.

Что же в наши дни известно об этой незаурядной личности? Алкуин (735–804) был ученым монахом и математиком из Ирландии, автором ряда учебников по математике. Король Карл Великий благоволил к ученым и всячески поощрял развитие наук. За королевским круглым столом нередко проводились состязания в решении хитроумных головоломок, в которых Алкуин имел возможность проявить свои незаурядные способности.

Алкуин основал Палатинскую школу в Туре (созданную для детей Карла V), принимал участие в основании университета в Париже. Добавим, что Алкуин был другом и учителем Карла Великого, его ученым советником.

Из других головоломок Алкуина наибольшую известность получили задачи 1) о гончей и зайце, 2) о покупке свиней, 3) о трех наследниках и 21 бочке, 4) о ста мерах пшеницы, 5) о быке. Но только головоломка о волке, козе и капусте до сих пор поражает воображение и детей, и взрослых. Эту и некоторые другие задачи Алкуин поместил в свой трактат “Задачи для оттачивания ума юношей”, написанный, как было принято в то время, латиницей.

Перед публикацией данной статьи очень хотелось подержать в руках текст первоисточника. А вдруг там приведены оба решения? И вот копия латинского манускрипта передо мной. Под №ХVIII легендарная задача. Сразу бросается в глаза, что решение одно — то самое, которое приводится в большинстве пособий. Но сама головоломка имеет иное название: “Задача о человеке, козе и волке”! А ее условие (если переводить близко к оригиналу) таково:

“Один человек должен был перевезти через реку волка, козу и кочан капусты. И не удалось ему найти другого судна, кроме как такого, которое могло выдержать только двоих из них. Задача, таким образом, заключалась в том, как всех перевезти на другой берег целыми и невредимыми. Скажите, кто способен: каким путем они могут перебраться на другой берег невредимыми” (перевод с латинского выполнен Е.И. Сухиной).

Так что же, все загадки разгаданы? Нет, последнее десятилетие преподносит новые сюрпризы. Вот уже в нескольких изданиях при объяснении решения данной головоломки авторы делают одну и ту же забавную ошибку. Раскроем на с. 244 пособие Е.А. Латия “365 развивающих игр и затей для маленьких детей” (М.: Эксмо-Пресс, 2001), где предлагаемое решение столь фантастично, что его следует воспроизвести дословно: “Разгадка: сперва везут волка и капусту, оставляют капусту на противоположном берегу; везут волка обратно и оставляют на берегу; забирают козу, переправляют на другой берег; там забирают капусту, везут обратно к волку и уже вместе их окончательно перевозят на другой берег”.

Если бы волка и капусту можно было везти в лодке одновременно, то переправа завершилась бы гораздо быстрее, чем указано Е.А. Латием (но по условию задачи их нельзя переправлять вместе!) В вышедшей ранее раскраске “Угадайка: Выпуск 4” (М.: Крона, 1996) волка заменили на крокодила, козу — на пирата Крюка, а капусту — на Питера Пэна, но решение аналогично предыдущему: “Сначала надо перевезти Питера и крокодила...” и т.д. Очевидно, что первоисточник ошибки один и тот же. Быть может вам удастся найти его?

А вдруг это Алкуин через века задумал подшутить над нами? Ничем другим я не могу объяснить то обстоятельство, что и сам первоначально при объяснении второго варианта решения указал не 7 рейсов, а 11, причем заметил свою оплошность в самый последний момент.

Да, еще не все тайны замечательной задачи разгаданы, и не исключено, что лукавая улыбка Алкуина будет преследовать не одно поколение авторов, составителей и читателей.

 

Где еще можно прочитать об Алкуине и его знаменитой задаче

Баврин И.И., Фрибус Е.А. Занимательные задачи по математике — М.: ВЛАДОС, 1999.

Баврин И.И., Фрибус Е.А. Старинные задачи — М.: Просвещение, 1994.

Белов В.Н. Головоломки из близкой дали // Компьютерра. — 2000. — № 1.

Депман И.Я. История арифметики — М.: Просвещение, 1965.

Леман И. Увлекательная математика — М.: Знание, 1985.

Попов Г.Н. Сборник исторических задач по элементарной математике — М. — Л.: Главная редакция научно-популярной и юношеской литературы, 1938.

 

НАЧАЛЬНАЯ ШКОЛА №7-2002, c. 69-70.

 

 

Решение проблемы с волком, козой и капустой (форум Programming Diversions на Coderanch)

Нет, Джим Инст, вам не нужно думать о том, что происходит, когда фермер пересекает реку, или о том, что делает лодка; вы просто предполагаете, что лодка находится там, где находится фермер. На самом деле я получил 16 возможных состояний, пронумерованных от 0 до f, где самый старший бит (3-й бит = 8) представляет фермера, 2-й бит = 4 - это волк, 1-й бит = 2 - это гусь, а 0- -й бит (младший бит = 1) представляет собой зерно капусты или что-то еще.

Итак, f означает, что все четверо находятся на этой стороне реки, 0 означает, что все четыре пересеклись, 1 означает, что капуста одна на этой стороне реки, 2 означает, что гусь один на этой стороне реки и т. Д. можно было бы считать, что это означает, что дополнение числа находится на другой стороне реки, поэтому 0 означает f на другой стороне. Тогда у вас будет инвариант thisSide + thatSide == 0xf.
По эту сторону реки есть три запрещенных штата: 3, 6, 7, где гусь ест капусту, лес - козу, или и то, и другое.Это означает, что на другой стороне есть три запрещенных состояния, 8 9 и c. Мы знаем, что 8 + 7 или 9 + 6 или c + 3 в сумме дают 0xf. Остается в общей сложности 10 разрешенных состояний. За каждым разрешенным состоянием могут следовать 1, 2 или 3 разрешенных состояния-преемника.

Правила таковы, что фермер должен переходить каждый раз самостоятельно или в сопровождении одного предмета. Это эквивалентно побитовой операции XOR 8 9 a или c; если у вас есть переменные thisSide и thatSide, то одна и та же операция должна применяться к обеим сторонам, чтобы сохранить инвариант класса.Также вы удаляете из результатов любое из шести запрещенных состояний.
Вы можете вернуть состояния обратно на английский с помощью поразрядного И: private final int FARMER = 8, WOLF = 4, GOOSE = 2, CABBAGE = 1; . . . . если (состояние и ФЕРМЕР> 0) outputString + = "фермер"; если (состояние & WOLF> 0) outputString + = "волк"; и т. д.

Затем вы получаете дерево, начинающееся с f, и затем вы выполняете поиск дерева, пока не найдете в нем 0. Для достижения 0 требуется ровно 7 операций, первая из которых - состояние ^ = FARMER + GOOSE;

*********************************************** ***************************
В LISP он читает что-то вроде этого, предполагая, что ваш алгоритм поиска по ширине и оператор -> уже поставлено: (defparameter * farmer * '((fwgcR wcRfg) (fwgRc wRfgc gRfwc) (fwcRg wcRfg wRfgc cRfwg) (fgcRw gRfwc cRfwg) (fgRwc gRfwc Rfwgc) (wcRfg fwcRg fwgcR) (gRfwc fgRwc fwgRc fwcRg) (cRfwg fwcRg fgcRw) (wRfgc fwgRc fwcRg) (Rfwgc fgRwc))) (defun farmer-lmg (состояние) (-> * фермер * штат)) (width-search 'fwgcR' Rfwgc # 'farmer-lmg) Аббревиатуры (очевидно) означают фермерскую волчью гусиную капусту и РЕКУ; те, кто до R, находятся на этой стороне, а те, что после R, находятся на этой стороне.Бит defun создает генератор легального хода (LMG).
*********************************************** **************************
С предоставленными нами утилитами LISP он работает, но, кажется, всегда дает мне один и тот же ответ . Я думаю, есть 4 возможных решения, но первая операция всегда заключается в том, что фермер переносит гуся, а четвертая операция всегда возвращает гуся.

[править] Незначительные орфографические исправления и значение lmg [/ править]
[30 ноября 2007 г .: Сообщение отредактировал: Кэмпбелл Ричи]

.

Волк, коза и капуста - обучающие игры

Это не только новая игра. Это тоже загадка. Надо сказать, что это очень известная головоломка.
Волк, козел и кочан на берегу реки. Недалеко от них есть лодка. Им нужно переплыть реку и добраться до другого берега реки. Но только один из них может пользоваться лодкой одновременно. Цель головоломки - перенести волка, козу и кочан на другой берег реки, и все они должны быть в безопасности.Это довольно сложно, потому что, если вы оставите волка и козу на одном берегу реки, волк съест козу. Если оставить козу и кочан вместе, коза съест капусту. Это очень интересная логическая головоломка.
Уважаемые родители, не торопитесь и не пытайтесь помочь своим детям! Неплохо, если они не могут сразу ответить на этот вопрос. Головоломка для них не очень сложная. Единственное, что им нужно, - это немного подумать.

.

Галерея избранного для Fat-Furry-Wolf - Fur Affinity [точка] net

~ Толстый-пушистый-волк

Участник с: 20 окт.2016 г. 08:14

  • Профиль
  • Галерея
  • Обрывки
  • Избранное
  • Журналы
.

«Капуста, волк и коза» Дональда Лэрда

«Маленькая девочка с протекающей лодкой

Когда-то была капуста, волк и коза

Переправить на другую сторону

Из реки шириной в полмили».

Так начинается история в оживленных стихах бесстрашной молодой девушки, которая решает извечную логическую головоломку и переправляет трех своих пассажиров через реку, не позволяя волку съесть козу или козу съесть капусту. Героическая сказка в юмористических стихах ок.

«Маленькая девочка с дырявой лодкой

Когда-то была капуста, волк и коза

Переправить на другой берег

Из реки шириной в полмили."

Так начинается история живыми стихами бесстрашной молодой девушки, которая решает извечную логическую головоломку и переправляет трех своих пассажиров через реку, не позволяя волку съесть козу или козу съесть капусту. Героическая сказка в Юмористические стихи уравновешены смекалкой и стойкостью маленькой девочки, а также игривыми ритмами стихов.Детям понравятся сказка и музыка, а родителям - мудрость и остроумие.

.

Смотрите также


Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.



Понравился рецепт? Подпишись на RSS! Подписаться!